A Kalman filtering induced heuristic optimization based partitional data clustering
نویسندگان
چکیده
منابع مشابه
Optimization-based Sampling in Ensemble Kalman Filtering
In the ensemble Kalman filter (EnKF), uncertainty in the state of a dynamical model is represented as samples of the state vector. The samples are propagated forward using the evolution model, and the forecast (prior) mean and covariance matrix are estimated from the ensemble. Data assimilation is carried out by using these estimates in the Kalman filter formulas. The prior is given in the subs...
متن کاملUncertain Centroid based Partitional Clustering of Uncertain Data
Clustering uncertain data has emerged as a challenging task in uncertain data management and mining. Thanks to a computational complexity advantage over other clustering paradigms, partitional clustering has been particularly studied and a number of algorithms have been developed. While existing proposals differ mainly in the notions of cluster centroid and clustering objective function, little...
متن کاملBlack hole: A new heuristic optimization approach for data clustering
0020-0255/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.ins.2012.08.023 ⇑ Address: Islamic Azad University, Khoy Branch, E-mail addresses: [email protected], hatam Nature has always been a source of inspiration. Over the last few decades, it has stimulated many successful algorithms and computational tools for dealing with complex and optimization problems. This paper pr...
متن کاملK-attractors: a Partitional Clustering Algorithm for Numeric Data Analysis
Clustering is a data analysis technique, particularly useful when there are many dimensions and little prior information about the data. Partitional clustering algorithms are efficient, but suffer from sensitivity to the initial partition and noise. We propose here k-Attractors, a partitional clustering algorithm tailored to numeric data analysis. As a pre-processing (initialization) step, it e...
متن کاملFuzzy Partitional Clustering Algorithms
Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more and more research results on them have been developed in the literature. In order to study these algorithms systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and constraints on membership function or cluster centers. Moreover, the adva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2016
ISSN: 0020-0255
DOI: 10.1016/j.ins.2016.07.057